This article will go over the basics of using MathJax and Markdown.


What is it?Edit


The following code \[erfc(x) =\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}\] will produce

\[erfc(x) =\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}\]


What is it?Edit

This will have an introduction to using MathJax and Markdown. \[erfc(x) =\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}\]

Hello, $erfc(x) =\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}$

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.